imageGenerationWithDiffusionModels
Documentation for imageGenerationWithDiffusionModels.
imageGenerationWithDiffusionModels.add_noise_to_image
imageGenerationWithDiffusionModels.load_digits_data
imageGenerationWithDiffusionModels.visualize_noising_of_image
imageGenerationWithDiffusionModels.add_noise_to_image
— Functionadd_noise_to_image(img::Vector{Float64}, noise_step::Int64, alpha_bar::Vector{Float64}; rng = Random.GLOBAL_RNG)
Applies Gaussian noise to an image.
Arguments
img::Matrix{Float32}
: Input imagenoise_step::Int64
: A noising stepalpha_bar::Vector{Float64}
: Vector of noise parameters. Length must be at least "noise_step". Comupted by taking the Cumulative product of (1-"variance schedule")rng::Random.TaskLocalRNG
: Random number generator. Defaults to:Random.GLOBAL_RNG
.
Returns
A noised version of image.
imageGenerationWithDiffusionModels.load_digits_data
— Methodload_digits_data(filepath::String)
Loads digits data from a .mat filepath
.
Arguments
filepath::String
: A filepath to .mat digits data.
...
imageGenerationWithDiffusionModels.visualize_noising_of_image
— Functionvisualize_noising_of_image(img, noise_step, alpha_bar, rng = Random.GLOBAL_RNG)
Visualizes the Gaussian noising process of an image.
Arguments
img::Matrix{Float32}
: Input imagenoise_step::StepRange{Int64, Int64}
: Number of noising steps (in each step, noise is applied to the output of the previous step)alpha_bar::Vector{Float64}
: Vector of noise parameters. Length must be at least "noise_step". Comupted by taking the Cumulative product of (1-"variance schedule")rng
: Random number generator. Defaults to:Random.GLOBAL_RNG
.
Returns
An image visualizing the Gaussian noising process of an image horizontally.